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Calculations are made of the small-angle inelastic proton-deuteron cross section near threshold. The 
theory assumes impulse approximation to relate the interaction of the incident proton with the target 
nucleons to the free nucleon-nucleon scattering amplitude. Effective-range theory is used to describe the final-
state interaction of the target nucleons in the 5 state. The cross section at small angles is dominated by 
events which leave the target nucleons in the singlet S state. The cross section depends on three nucleon-
nucleon parameters: the coefficients of the singlet 5 and triplet 5 terms in the cross section, 2 , and 2< and 
the sum of the proton-neutron and proton-proton differential cross sections, o-„p-f o>p. These parameters 
are determined at the laboratory angles of 5°, 10°, 15°, and 20° by making a least-squares fit to the experi
mental measurements of Stairs, Wilson, and Cooper in the preceding paper. This fit mainly determines S8. 
This parameter is particularly sensitive to the isotopic spin zero nucleon-nucleon amplitudes and thus 
these values of S s may be of use in future phase-shift analyses. 

I. INTRODUCTION 

THE scattering of high-energy protons from deu
terium has been extensively studied in recent 

years with the aim of relating the proton-deuteron cross 
section directly to the fundamental nucleon-nucleon 
interaction. The elastic proton-deuteron cross section 
and polarization have been measured by Postma and 
Wilson1 and studied in the impulse approximation by 
Kerman, McManus, and Thaler.2 The quasi-free (often 
called quasi-elastic) proton-deuteron scattering has been 
studied experimentally by Kuckes and Wilson3 and 
theoretically by Everett.4 Quasi-free scattering is an 
inelastic process in which the incident proton interacts 
with one of the target nucleons essentially as if the latter 
were free. Two detectors are placed about 90° apart to 
detect the two outgoing particles and their energies are 
selected to insure that the third particle (the spectator 
nucleon) has nearly zero energy. Under these circum
stances the theory says that the proton-deuteron cross 
section can be related directly to the free proton-nucleon 
cross section. 

In this paper we discuss a different type of in
elastic process, which we term slightly-inelastic scat
tering. By slightly-inelastic we mean an inelastic process 
in which the incident proton loses only a few MeV. In 
such a process a high-energy incident proton interacts 
with one of the target nucleons and transfers to it just 
enough energy to disintegrate the deuteron. Thus, the 
process is p+d —* (n+p)+pi where the final proton has 
the high energy. One is interested in the cross section 
dcr/dQpdE', where Up is the solid angle into which the 
high-energy proton is scattered and Ef is the final 
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energy of the high-energy proton. Experimentally one 
observes, at a fixed scattering angle, a spectrum of 
outgoing protons with energies a few MeV less than the 
elastically scattered protons. Because the resultant 
neutron-proton system has only a few MeV in its center-
of-mass system, the amplitudes for the scattering of the 
incident proton from the target neutron and proton 
interfere, and so the slightly-inelastic cross section 
cannot be related directly to the free nucleon-nucleon 
cross sections. 

In any inelastic proton-deuteron process the target 
nucleons go from the deuteron ground state, which is a 
triplet spin state, to a free scattering state in the con
tinuum, which is a statistical mixture of triplet and 
singlet states. However, for small scattering angles 
where the momentum transfer, q, is small,5 the proba
bility that the deuteron makes a transition to a free 
triplet state is very small due to the orthogonality of the 
spatial part of the deuteron wave function and all triplet 
scattering state wave functions. This means that the 
scattering will involve predominantly triplet-singlet 
transitions in spite of the smaller a priori probability 
of finding a singlet state. Such a triplet-singlet transition 
involves only the spin-dependent parts of the nucleon-
nucleon scattering matrix and, as we shall see, brings in 
the isotopic spin zero and one (T=0 and T= 1) matrix 
elements with equal weight. This latter fact opens the 
possibility of using small-angle slightly-inelastic proton-
deuteron scattering measurements to obtain valuable 
information about the T=0 part of the nucleon-nucleon 
scattering matrix. We discuss this in more detail in 
Sec. IV. 

Small-angle slightly-inelastic proton-deuteron scat
tering is particularly suitable for theoretical treatment 
since the conditions are such as to allow reasonably 
accurate calculations to be made without highly in
volved computation. Because the incident particle has 
high energy the impulse approximation can be used to 

8 In the case of 158-MeV incident protons considered in this 
paper, g is at most 1.0 F _ 1 at the maximum laboratory scattering 
angle of 20°. (Here, and throughout this paper, we use a system 
of units in which h=c— 1.) 
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relate the fundamental nucleon-nucleon interaction to 
the free-particle scattering matrix. This approximation 
is particularly good at small angles, where off-energy-
shell corrections are small. Also, since the resultant 
neutron-proton system is left with only a small amount 
of energy in its center of mass, the final-state wave 
functions can be described accurately using potentials 
fitted to the low-energy nucleon-nucleon data. Further
more, since the momentum transfer is small, the results 
are not sensitive to the detailed structure of the final-
state wave functions at small distances. 

The general theory of slightly-inelastic proton-deu-
teron scattering is presented in Sec. II. In Sec. I l l A 
calculations are made assuming that only 5-wave 
neutron-proton scattering states are involved, using a 
square well potential fitted to the low-energy data. In 
Sec. I l l B the scattering to higher angular momentum 
states is considered. As the scattering angle increases 
this contribution increases and is comparable to the 
5-wave contribution at 15°. 

The cross section for the reaction n+d—> {n-\-n)-\~p 
in which the final proton has the high energy was calcu
lated some years ago by Gluckstern and Bethe.6 Their 
calculation used a particular form for the nucleon-
nucleon potential and neglected both the factor 
exp(tjq-r) in the form factor integrals and the transi
tions to higher angular momentum states. Castillejo 
and Singh7 have made calculations similar to those in 
this paper, but they also neglected higher angular 
momentum states. It is essential to include these states 
in order to get detailed agreement with the experimental 
data. The theory of slightly-inelastic electron-deuteron 
scattering, which in many respects is similar to inelastic 
proton-deuteron scattering, has been investigated by 
Durand.8 His analysis is of experiments involving large 
momentum transfer (1.8 to 2.8 F-1) and its primary 
purpose is to study the detailed structure of the low-
energy final-state wave functions. The purpose of the 
present analysis is to study the high-energy proton-
neutron interaction. 

The slightly-inelastic proton-deuteron cross section is 
found to depend on (<rnp-\-app), the sum of the free 
proton-neutron and proton-proton cross sections, and 
on two other parameters, 2S and 2f, which are also 
functions of the nucleon-nucleon scattering amplitudes, 
These parameters are defined in Eqs. (3.9) and (3.10). 
In impulse approximation 2* is also related to elastic 
proton-deuteron scattering. However slightly-inelastic 
scattering mainly depends on2g . In Sec. IV the theory 
is used to analyze the measurements of Stairs, Wilson, 
and Cooper9 at 158 MeV. The parameters (<rnp+<rPF), 

6 R. Gluckstern and H. Bethe, Phys. Rev. 81, 761 (1951). 
7 L. Castillejo and L. Singh, in Nuclear Forces and the Few-

Nucleon Problem, edited by T. C. Griffith and E. A. Power 
(Pergamon Press, New York, 1960). 

8 L . Durand, III , Phys. Rev. 123, 1393 (1961). 
9 D. Stairs,R. Wilson, and P. Cooper, Jr., preceding paper [Phys. 

Rev. 128, 1672 (1963)]. This paper will be referred to as SWC. 

2Jj, and 2S are found by making a least-squares adjust
ment to the data. The experimental results in this way 
are interpreted as yielding a measurement of 2 a at the 
laboratory angles 5°, 10°, 15°, and 20°. The values ob
tained are found to differ by as much as 40% from the 
values predicted by the phase-shift solutions of Breit 
et al.10 and others. 

II. THEORY OF INELASTIC PROTON-DEUTERON 
SCATTERING 

In this section we derive the differential cross section 
da/dQpdE' for the process in which a high-energy inci
dent proton is scattered from a deuteron into the solid 
angle dilp and transfers enough energy to disintegrate 
the deuteron, coming out with a final energy E'. Let 
P and P' be the initial and final momenta of the incident 
proton and let kp, kp and kn, kn' be the initial and final 
momenta of the target proton and neutron, respectively. 
Since initially the target nucleons are bound to form a 
deuteron at rest, we have kn=—kp. Then, from mo
mentum conservation the momentum transfer is 

q = P - P ' = k„'+k, ' . (2.1) 

The relative momentum in the center of mass of the 
resultant neutron-proton system is 

k = | ( k / - V ) . (2.2) 

Experimentally the magnitude and direction of P' are 
measured. Knowing P this determines q and the magni
tude of k. The latter follows from energy conservation. 
Assuming that kp

2, kn'
2 and (P2—P'2) are small com

pared to m2, a semirelativistic expression for the differ
ence between the final and initial energies is 

Ef-E^UP^-P^/E+aq'+^/m+eB^O. (2.3) 

Here E=(P2-\-m2)112 is the total energy of the incident 
proton, m is the mass of the proton, and es is the abso
lute magnitude of the binding energy of the deuteron. 

The momenta kp and kn
f are not determined indi

vidually. They are given in terms of q and k by 

k n '=Jq+k, (2.4) 

V = iq-k , (2.5) 

and so depend on the angle between q and k. In the 
special case when k=Jq we have kp' = 0 and k / = q ; 
the neutron carries off all the momentum transferred 
to the deuteron and the proton is left at rest. In the 
case k=—Jq the situation is reversed. These are just 
the conditions for quasi-free proton-neutron and proton-
proton scattering, respectively. A broad peak is expected 
in the differential cross section for values of E' corre
sponding to k = %q. For scattering angles <20° this peak 
is largely masked, as we shall see, by a peak due to the 
strong final-state interaction between the resultant 

10 G. Breit, M. Hull, K. Lassila, and K. Pyatt, Jr., Phys. Rev. 
120, 2227 (1960); M. Hull, K. Lassila, H. Ruppel, F. McDonald, 
and G. Breit, ibid. 122, 1606 (1961). 
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target nucieons. However, for larger scattering angles 
quasi-free processes play an important role. We shall 
discuss them in more detail in a later paper. 

We wish to relate the proton-deuteron scattering 
matrix to the free nucleon-nucleon scattering matrix. 
Chew and Goldberger11 have shown in general that if 
the T matrix for the total Hamiltonian is expanded in 
terms of the two-body t matrices one gets T=tn+tP 

plus terms which represent the multiple scattering of the 
incident proton from the two target nucieons and the 
effect of the binding of the target nucieons. Here tn and 
tp are the t matrices for free proton-neutron and proton-
proton scattering, respectively. In the spirit of the 
impulse approximation we neglect the additional terms 
in the expansion of T and so obtain the following for 
the transition matrix between two states 3>0 and $& of 
the unperturbed system: 

Tba= (^b
(-\tn^a) + (^-\tp^a). (2.6) 

In the present problem the initial state is 

<f>a= <i>0= (2?r)-3 exp[*±K- (r»+rp)] 
Xexp(iP- ro)0o(rn-rp), (2.7) 

where <£o is the deuteron ground-state wave function. 
Here r0, rp, and r„ are the position vectors of the inci
dent proton, the target proton, and the target neutron, 
respectively. K is the initial momentum of the center 
of mass of the deuteron (which is presumably zero). The 
final-state wave functions is 

$,<-> = $k(-> = (2,)-» exppJK' • (rw+ rp)] 
Xexp(*F- r0)«k<->(rn-rp), (2.8) 

where <̂ k(~) is a neutron-proton incoming scattering 
state of relative momentum k. Using these wave 
functions we get 

rn=(*k<->,k*0) 
= S3(K+P-K'-P0a<7)F(q,k). (2.9) 

Here 

^(q,k) = y"c*kW(r)]Vo(r) exp(*Jq-r)&, (2.10) 

and 

/ n (g)5 3 (k n+P~k n ' -F) = <kn ' ,F|/n |kn,P). (2.11) 

That is, tn(q) is the nonsingular part of the t matrix. 
In general the states | k,P) and | kn',P') do not have 

the same energy, so that the / matrix in (2.11) does not 
resemble the / matrix for free proton-neutron scattering. 
Using Eq. (2.3) it is easily shown that A£, the energy 
difference between these two states, is 

A £ = - € i ? - ( k - | q ) 2 M (2.12) 

Thus AE will be small under two conditions. Either both 
11 G. Chew and M. Goldberger, Phys. Rev. 98, 778 (1952). 
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k and q are small, which is the condition for slightly-
inelastic scattering, or else k=fq, which is the condition 
for quasi-free scattering. In these two special cases it is 
possible to use the free / matrix to describe tn(q)-

We get Tp by interchanging the labels "p" and "»" 
everywhere in Eq. (2.9). Recalling Eq. (2.2) we get 

r p =6 3 (K+P-K' -F) /p(g)^(q , - k ) 

and so 

r = 5 3 ( K + P - K ' - F ) 
Xltn(q)F(qM)+tp(q)F(qy - k ) ] . (2.13) 

The t matrices are related to the nucleon-nucleon 
center-of-mass scattering matrix M by 

t(q) = - (2*/tn)(P/P0)M(q), (2.14) 

where P and P0 are the laboratory and nucleon-nucleon 
center-of-mass momenta, respectively. Since the deu
teron is initially in a triplet spin state we must multiply 
Eq. (2.13) on the right by A*, the triplet projection 
operator, obtaining 

T= -63(P+K-F-K ,)(27r/w)(P/Po)3Tl, (2.15) 

where 

W=ZM»p(q)F(q,k)+Mpp(q)F(q, -k)]A«. (2.16) 

Here Mnp and Mpp are the proton-neutron and proton-
proton scattering matrices. 

The cross section then is 

<fo= (m/pXP/mPoMEf-E^Tx&^m^dFdk. (2.17) 

The trace averages over initial and sums over final spin 
states. We write dk=k2dQkdk and integrate with respect 
to dk to remove the delta function. Using (2.3) we get 

da/dttpdE'^ (da/dtipdP'XdP'/dE') 

==%D Ti(<5tf Wl)dQk, (2.18) 
where 

D=PP'k/(2tnPQ*) (2.19) 

is the kinematical factor. Finally we must integrate 
with respect to dUk since only the magnitude of k is 
determined. Thus 

da/dQpdE'= \D JTv(m;M)dQk. (2.20) 

Since the neutron-proton potential is spin-dependent, 
the final-state wave function </>k and hence the form 
factor F(q,k) will be spin dependent. It is necessary, 
therefore, to write the scattering matrix as the sum of 
two parts: one part describing transitions to a triplet 
final state and the other transitions to a singlet final 
state. Using At and A„ the triplet and singlet projection 
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operators, we can write 

m = At[Mnp(q)$t(<l,k)+MPP(q)5t(<l, -k) ]A« 

+A.[Jlf npfe)5F.(q,k)+Arpp(g)3r.(q, - k ) ] A „ (2.21) 

where ^ s and $t are given by Eq. (2.10) with the ap
propriate singlet and triplet wave functions, respec
tively, inserted for <£k(-). 

Furthermore, if k, the relative momentum in the 
center of mass of the resultant neutron-proton system, 
is small, then only the final-state interaction in the S 
state need be considered. The total wave function in the 
singlet state can then be written 

V k = a X k + ^ k , (2.22) 

where sXk is the singlet S wave function and 

i/>k= (2T)-8/2[« ik" r-sinAf/*r] (2.23) 

is the plane wave function for all higher angular mo
mentum states. Similarly, the triplet wave function is 

The form factors can then be written 

$S = F8+FB-F0, 

$t=Ft+FB-FQ. 

(2.24) 

(2.25) 

(2.26) 

Here Fs and Ft are the form factors of Eq. (2.10) 
evaluated with 5Xk

(~) and fXk
(_), respectively, in place 

of </>k(~\ and FB and F 0 are the Born approximation 
form factors evaluated with (2w)~z/2eik'T and (2w)~zl2 

Xsmkr/kry respectively. 
For the 5-wave form factors we have 

Fo(q,k) = F 0 ( q , - k ) (2.27) 

and similarly for F8 and Ft. Then the scattering matrix 
can be written 

Wl==At(Mnp+MPP)Ft(q,k)At 

+As(Mnp+Mpp)F8(q,k)At 

+ {Mn p[FB(q,k)- JP0(q,k)] 

+MPP[FB(*, -k ) -F 0 (q ,k ) ]}A«. (2.28) 

In the next section we shall use these results to calculate 
the cross section given by Eq. (2.20). 

III. CALCULATION OF THE CROSS SECTION 

The cross section is calculated by inserting the ex
pression for 371 given by Eq. (2.28) into Eq. (2.20). Since 
(FB—FO) represents that part of the final-state wave 
function with angular momentum greater than zero, 
the last term in Eq. (2.28) is orthogonal to the first two 
terms upon integrating with respect to dQk> Further 
more, since A3Af = 0 we see that the first two terms give 
no cross term. Finally we note that Fh F8, and F 0 are 
independent of the direction of k and so integrating 
these terms simply yields 4TT. We get then for the 

cross section: 

da/dtipdE' 
= (47rP/6){Tr[(Mnp++MPJ ,

t)A,(Mnp+Mpp)A<] 

X\Ft\*+Trt(Mni;+Mj)As 

X(Mnp+Mpp)A^\F8\* 

+Tr[(JfnptJfnp+Jlfpp tifpp)Aj 

X [ M ( * , ? ) - | F 0 | 2 ] 
+ T r [ 2 Re(MnpWpp)At~] 

X[tf( fc ,g)- |Fo | ' ]> . (3-1) 
Here 

(3.2) J f ( * , ^ )=(4r ) - 1 D F * ( q , k ) ] ^ , 

N{k,q)= {^)~l [FB(qyk)FB(<l, -k)da f c . (3.3) 

The cross section thus splits into four terms: one term 
representing the contribution of the triplet 5 final state, 
one the contribution of the singlet S state, and two the 
contribution of all higher angular momentum states. 
We proceed to calculate these terms. 

A. S-State Terms 

In the case of slightly-inelastic proton-deuteron scat
tering the relative momentum k in the center of mass of 
the resultant neutron-proton system is small, so that 
the main contribution to the cross section will come 
from events which leave the final-state neutron-proton 
system in a relative S state. This contribution is given 
by the first two terms in (3.1). The cross sections for 
triplet and singlet S-state scattering are 

(da/dQpdE^^lwDlF«(q,k) | 2 S«, (3.4) 

(de/dajE'^brDl F.(q,k) | 2 f 2 . , (3.5) 

where 

S*=i Tr[(Jfnpt+Afpp^A^Jfn p+JfP P)AJ, (3.6) 

•2.=* Trl(MnJ+MpJ)A9(Mnp+Mpp)AtJ (3.7) 

Using the notation of Kerman, McManus and Thaler2 

the nucleon-nucleon scattering matrix can be written 

Afr=^!r+^r(ap i*n)(or2-n)+Cr(o ,rn+o'2-n) 

+£r(ai-q)(<F2-q)+F r(a1-p)(tF2-p). (3.8) 

Here T, which is either 0 or 1, labels the two possible 
isotopic spin states of the nucleon-nucleon system. The 
subscripts 1 and 2 label the spin operators for the two 
interacting nucleons, and n, p, q are unit vectors in the 
directions PoXPo', Po+Po', and P0 '—P0, respectively. 
The proton-proton system is a pure isotopic spin 1 state 
and the neutron-proton system is an equal mixture of 
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r=Oand r = l , so 

Mpp=Mh 

Mnp=(M1+Mo)/2. 

Then evaluating the traces in Eqs. (3.4) and (3.5) 
we find: 

2,=|{|3^i+^lo|2+(5/3)|3C1+Co|2 

+f(|35i+J5oI2+ | 3 £ i + £ 0 | 2 + \3Fi+F0\% (3.9) 

2.=l{\Ci-Co\*+\Bi-Bo\* 
+ \E1-E0\*+\Fi-Fo\>}. (3.10) 

There are a number of important features to be noted 
about these results. In the first place we see that the 
triplet cross section depends on the nucleon-nucleon 
amplitudes in the same way as does the elastic proton-
deuteron cross section,2 whereas the singlet cross section 
has quite a different dependence. In fact, as already 
noted, in the singlet cross section the T=0 and T—\ 
amplitudes occur with the same statistical weight 
factor. Secondly, since the deuteron ground-state wave 
function is orthogonal to the triplet scattering states, 
we see from Eq. (2.10) that F«(0,fc) = 0. Hence for small 
q the singlet cross section will be much larger than the 
triplet cross section, in spite of the statistical weight 
factor of | multiplying the singlet cross section. Thirdly, 
since the Coulomb interaction between the two protons 
is largely spin-independent, it occurs mostly as a modifi
cation of Ai. Thus the Coulomb interaction does not 
enter into 2)«. 

In evaluating Ft(q,k) and F*(q,k) it is important to 
use exact scattering state wave functions. To do this 
we have used square well potentials to describe the 
low-energy neutron-proton potential. The well param
eters were chosen to fit the effective range parameters. 
The well parameters used for the singlet and triplet 
potentials are given in Table I, together with the values 
of the scattering length and effective range calculated 
from these potentials. The tensor force has been 
neglected. 

The calculation should not be sensitive to the details 
of the potential (or equivalently, to the structure of the 
wave functions at small distances) because it is limited 
to momentum transfer of at most 1.0 F - 1 . Electron-
deuteron cross-section measurements, both elastic12 and 

TABLE I. Square-well parameters used for the singlet and 
triplet state together with the scattering length, a, and the 
effective range, ro, calculated from these potentials. 

Well Well Scattering Effective 
depth width length, a range, b 

State (MeV) (F) (F) (F) 

Triplet 345 2.074 ~$M 175~~ 
Singlet 14.54 2.545 -23.74 2.65 

12 J. Friedman, H. Kendall, and P. Gram, Phys. Rev. 120, 992 
(1960); J. Mclntyreand G. Burleson, Phys. Rev. 112,2077 (1958). 
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I r i i" •- 1 
0.995 0.990 0.985 0.980 0.975 

<—P'/P.i 

FIG. 1. The 5-wave contribution to the inelastic proton-deuteron 
cross section at 10° for 158-MeV incident protons. The figure 
shows the singlet-5 and the triplet-5 contributions, their sum, and 
also the 5-wave contribution neglecting final-state interaction 
(Born-5). 

slightly-inelastic,13 do show evidence of a hard core in 
the neutron-proton potential. However these effects only 
appear at momentum transfers of 1.6 F _ 1 or more. For 
#<1.0 F - 1 all reasonable deuteron wave functions give 
essentially the same deuteron form factor. Furthermore, 
Durand's calculation8 of the slightly-inelastic electron-
deuteron cross section only shows the effect of a hard 
core in the neutron-proton potential at a momentum 
transfer greater than 1.5 F"1. It is interesting to note 
that in at least one case14 the square well potential and 
a repulsive core potential both give the same deuteron 
form factor for momentum transfer up to 2.4 F_1. 

The normalized deuteron wave function calculated 
from the triplet potential was used, together with the 
scattered wave functions 'Xk and *Xk, calculated from 
these potentials, to calculate the functions /\(q,k) and 
F*(q,k). The results for 158-MeV incident protons 
scattered through 10° are shown in Fig. 1. Here are 
plotted the singlet and triplet cross sections separately, 
their sum, and also the 5-wave "Born approximation" 
cross section (that is, the 5-wave cross section calculated 
neglecting final-state interaction). This latter quantity 
is given by the sum of Eqs. (3.4) and (3.5) with Ft and 
F8 replaced by FQ. The values of 25 and 2t used are 
given in Table II. The cross sections are in millibarns/ 
steradian MeV. Along the abscissa we have plotted 
P'/Pei where Pei is the momentum of an elastically 
scattered proton; also along the abscissa, the energy in 
the center of mass of the resultant neutron-proton 
system, k2/m, is shown. 

As expected the triplet cross section is nearly zero. 
The singlet cross section is sharply peaked at the low-

13 H. Kendall, J. Friedman, E. Erickson, and P. Gram, Phys. 
Rev. 124, 1596 (1961). 

14 J. Mclntyre, Phys. Rev. 103, 1464 (1956). The remarkable 
similarity between the form factors for a hard core and square 
well potential up to q^2A F"1 suggests that in other calculations 
(such as those of references 8 and 13) the square well might be 
indistinguishable from a hard core potential for <?<2.0 F"1. 
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energy15 end of the spectrum, falling to one half of its 
peak value within 1 MeV of threshold. This is due to 
the strong final-state interaction between the target 
neutron and proton. When this interaction is neglected 
the whole character of the spectrum is changed. A 
broad maximum occurs at about 2.25 MeV above 
threshold, which is just the binding energy of the 
deuteron. The Born-approximation cross section in this 
region is much larger than the exact cross sections, since 
in Born approximation the triplet-state contribution, 
instead of being small, is 3 times the singlet contribu
tion, the factor 3 being just the statistical weight of 
the triplet state. 

At smaller angles the singlet peak increases; it is 
13.6 mb/sr MeV at 5°. The triplet cross section de
creases at smaller angles, being less than 1% of the 
singlet cross section at 5°. At larger angles the singlet 
peak decreases and the triplet cross section increases. 
At 15° the singlet peak is only 3.4 mb/sr MeV; the 
maximum of the triplet cross section is 10% of the 
singlet peak, but occurs at a somewhat higher energy. 
The effect of this is to lower and broaden the spectrum 
with increasing angle. 

B. Higher Angular Momentum States 

The last two terms of Eq. (3.1) give the contribution 
to the cross section of all states with angular momentum 
greater than zero. This contribution is expected to 
increase with i ; a swe shall see, it also increases with q, 
and hence with the scattering angle 0. 

The form factors FB and FQ are evaluated from 
Eq. (2.10) using (27r)-3/Vk'r and (2w)~m sinkr/kr, re
spectively, for <£k. For #0, the deuteron ground-state 
wave function, we use the simple Hulthen wave function 
given by Moraviscik16: 

<£o=0.26[exp(-ar)-exp(~i3r)]/r, 

a-0.232F"1 , 0= 1.202 F"1. 
(3.11) 

This enables us to perform the integrals with respect to 
dQk indicated in Eqs. (3.2) and (3.3). The results appear 
in Durand's article8 as Eqs. (29) and (30). The use of a 
different deuteron wave function to treat the higher 
angular momentum states is justified again because the 
calculation is limited to small momentum transfer. The 
traces in the last two terms of Eq. (3.1) are 

| Tr[(MnptMnP+ilfpl>
tMpp)Al]=(rnp+(rP3„ (3.12) 

| Tr[2 Re(ilf np tMpp)A,]=S i+i2,-(rnp-(rpp. (3.13) 

Here arnp and <rpp are the free neutron-proton and 
proton-proton differential cross sections in the nucleon-
nucleon center-of-mass system and 2* and S8 are given 

16 When referring to the abscissa of the figures in this and the 
accompanying article (SWC) we shall always mean the energy in 
the center of mass of the resultant neutron-proton system. This 
quantity increases to the right in the figures whereas the mo
mentum and energy of the scattered proton decrease to the right. 

16 M. Moraviscik, Nuclear Phys. 7, 113 (1958). 
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FIG. 2. The inelastic proton-deuteron cross section at 10° for 
158-MeV incident protons. The figures show the total 5-wave 
contribution, the contribution from higher angular momentum 
states (L>0), and their sum. 

by Eqs. (3.9) and (3.10). The trace in Eq. (3.13) is the 
interference term between the scattering of the incident 
proton from the target proton and from the target 
neutron. From the last two terms of Eq. (3.1), we get 
for the contribution to the cross section from higher 
angular momentum states: 

(d*/dQj4E')L>a 

= 47rD{(<rnp+<rPp)M(k,q) 

<Tnp-<Tpp]N(k,q) 

- [ S r h i S j / V } . (3.14) 

The total slightly-inelastic cross section is given by the 
sum of Eqs. (3.4), (3.5), and (3.14). 

In Eq. (3.14) the first term comes from the direct 
scattering of the incident nucleon by the target nucleons. 
The second term arises from interference of these two 
events. The third term is the S-wave contribution in 
Born approximation which must be subtracted out. 

From Eq. (3.14) we see that the ratio N/M is a 
measure of the importance of the interference term 
relative to the direct cross-section term. From the 
explicit form of M and Ns, it is found that their ratio 
depends on the parameter 

X=(k-q-wAiS)/*0, (3.15) 

where AE is given by (2.12). In the slightly-inelastic 
region, kq—>0 and X—»oo. In this limit N/M—>1 
and there is complete interference. In the quasi-free 
region, k = | q and so X « l . In this limit N/M —»0 
and the direct cross-section term dominates. In quasi-
free scattering the inelastic cross section is just propor
tional to the free nucleon-nucleon cross sections. 

It is a fundamental principle of quantum mechanics 
that the probability amplitudes for two processes inter
fere whenever these processes are indistinguishable. 
Now it may at first be thought that it is possible to 
determine whether the incident proton scatters from a 
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target neutron or a target proton by observing which 
target particle carries off the recoil momentum. How
ever, because of the internal momentum of the deuteron, 
the recoil particle may not be the particle with which 
the incident proton interacted. For example, the inci
dent proton could interact with a target proton with 
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FIG. 3. The inelastic proton-deuteron cross section at 5°, 10°, 
15°, and 20° for 158-MeV incident protons, calculated using the 
parameters in Table II. 

internal momentum kp=—q; the target neutron has 
kn=q. Then the incident proton transfers momentum 
q to the target proton, bringing it to rest in the labora
tory system, and the target neutron carries off the recoil 
momentum q. The probability of finding a target proton 
with internal momentum q decreases rapidly for 
q> (W€B)1/2, SO for large q the recoil particle will in fact 
be the particle with which the incident proton inter
acted, and so the interference term disappears; slightly-
inelastic scattering changes continuously into quasi-free 
scattering. We shall discuss quasi-free scattering in a 
subsequent article. 

Figure 2 gives the results at 10°. The exact 5-wave 
contribution is plotted together with (da/dQpdE^LX) 
and their sum. The contribution of the higher angular 
momentum states peaks at a smaller value of P' (larger 
value of k) than does the S-wave contribution. Hence 
the main effect of this contribution is to broaden out the 
peak in the spectrum. Also, since the 5-wave cross 
section falls off rapidly at smaller P\ the higher angular 
momentum states give the dominant contribution to 
the tail of the spectrum. 

Figure 3 compares the total cross sections at 5°, 10°, 
15°, and 20°, again using the parameters in Table II. 
The spectrum at 5° is due almost entirely to the singlet 
S state. At 10° the singlet S state still dominates, but 
the other terms in the cross section somewhat modify 
the spectrum. At 15° the singlet-5 contributes still less 
to the cross section. While it accounts for nearly 97% 
of the cross section right at the peak, it falls off rapidly 
while the other terms increase with decreasing J?'; it 
accounts for only 50% of the cross section at P'/Pe\ 

= 0.9800. At 20° two distinct peaks appear, the slightly-
inelastic and the quasi-free peaks. 

In the next section the theory will be used to analyze 
the experimental measurements of Stairs et al.9 

IV. ANALYSIS OF THE DATA 

Stairs, Wilson, and Cooper9 have measured the 
proton-deuteron inelastic cross section at 158 MeV 
using a high-resolution magnetic spectrometer. The 
measurements were made at 5°, 10°, 15°, and 20° for 
values of Ef ranging from threshold to about 10 MeV 
above threshold. The results are shown in Figs. 5, 6, 7, 
and 8 of SWC. 

Combining Eqs. (3.4), (3.5), and (3.14) we find that 
the cross section can be written 

da/dajiE'^iaS.+PZt+yiffnp+crpp), (4.1) 
where 

a=4wD(F8
2+N-F0

2), 

j3=4wD(Ft
2+N-Fo2), 

y=4wD(M-N). 

(4.2) 

(4.3) 

(4.4) 

The coefficients a, 0, and y are functions of q and k but 
do not depend upon the nucleon-nucleon scattering 
matrix. The parameters 2J„ 2*, o-np, and aVP are assumed 
to depend only on q, which, for a given scattering angle, 
is nearly constant over the range of k under considera
tion. These parameters are functions of the nucleon-
nucleon scattering amplitudes. Assuming these param
eters are constant at a given angle, the data at any 
angle can be fitted by adjusting only three parameters, 
2„ Si, and (app+anp). 

To analyze the data, the coefficients a, 0, and y were 
calculated at each angle as functions of P'/Pei. The 
experimental momentum resolution curve was then 
folded into these coefficients to correct them for finite 
resolution. Using the corrected coefficients in Eq. (4.1) 
a least-squares fit was made to the data at each angle. 
The best fits obtained are shown in Figs. 5, 6, 7, and 8 
of SWC and the values of the parameters found are 
given in Table II. Table II also lists the number of 
data fitted at each angle and the value of %2 obtained. 

At 5° the singlet S state so dominates that effectively 
only S8 is determined. The fit is shown in Fig. 5 of SWC. 

TABLE II. The values of the parameters S „ Si, and ((rnp-\-crVP) 
obtained from a least-squares analysis of the 158-MeV slightly 
inelastic proton-deuteron scattering data of Stairs et al* The 
number of points fitted and the value of x2 obtained are also given. 

Labora
tory 
angle 

5° 
5° 

10° 
15° 
20° 

2. 
(mb) 

12.17 ±0.25 
(12.01 ±0.12) 
11.50±0.70 
10.32 ±0.54 
6.70 ±0.45 

2< 
(mb) 

-30.7 ±48.2 
(7.17) 

10.0 ± 6.9 
7.2 ± 1.8 
8.09 ± 0.74 

<Tnp "T'O'pp 

(mb) 

0.2 ±21.6 
(17.1) 

10.8 ± 2.5 
8.71 ± 0.44 
9.17± 0.15 

No. of 
points 
fitted 

9 
9 

15 
10 

8 

Xs 

9.8 
10.5 
14.0 
15.9 
14.2 

* See reference 9. 
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The indeterminateness of 2* and ((rnp+app) is even 
greater than indicated by the large errors, since these 
errors have, in addition, a large positive correlation. If 
the values of 2* and {dnp+crVP) are constrained to have 
values near those indicated by other considerations 
(see Tables III and IV), x2 increased by only 7%. The 
value of 2* and ((Tnp+<rpp) used and the resulting value 
of 2a are given in parentheses in Table II. The actual 
points fitted are plotted as black circles. A x2 of 9.8 was 
obtained for a fit to 9 points. The two points at the 
lowest energy were not fitted since they actually occur 
below threshold and so the fit is very sensitive to the 
exact manner in which the resolution is folded in. The 
two points at the higher energy could not be fitted 
adequately and so were not included in the final deter
mination of 2S. No good reason is known why these 
two points cannot be fitted. 

The situation is better at 10°. Here all but the very 
first point was fitted, a total of 14 points, with a result
ing x2 of 14.0. The fit is shown in Fig. 6 of SWC. As is 
expected the errors on 2* and (crnp-{-<Tpp) are smaller 
now, since the triplet-S and higher angular momentum 
states are more important than at 5°. However, there 
is still a large positive correlation between these 
parameters. 

The 15° results are shown in Fig. 7 of SWC. An indi
cation of the quasi-free peak is seen in the broadening 
of the slightly-inelastic peak. In fitting these data the 
first point and the last three points were omitted. The 
selection of the points to be fitted is somewhat arbitrary. 
However, no other choice of points gave a reasonable 
fit. It is hard to understand why the last points cannot 
be fitted better than they are. 

Figure 8 of SWC shows that two peaks are clearly 
resolved at 20°. The singlet-5 peak is now just a bump 
on the lower energy end of the broad quasi-free peak. 
In the least-square fit, two points near threshold were 
excluded because they are not consistent with neighbor
ing points. The two points at the high-energy end were 
also excluded because they could under no circumstance 
be fitted and their inclusion distorted the rest of the fit. 
The complete disagreement here at high energy is even 
more serious than at 15°. At energies where these dis
crepancies occur the effective range theory used to 
calculate Ft and Fs is certainly not valid. However, the 

TABLE III. Comparison of the values of 2# obtained from the 
analysis of inelastic proton-deuteron scattering, from elastic 
proton-deuteron scattering, and from the phase-shift solutions of 
Breit et al.,& Prenowitz,b and Kerman, McManus, and Thaler.0 

Labora
tory 
angle 

5° 
10° 
15° 
20° 

Inelastic 
p-d 
(mb) 

10.0 ±6.9 
7.2 ±1.8 
8.09 ±0.74 

Elastic 
P-d 
(mb) 

7.82 ±0.35 
11.52 ±0.70 
9.79 ±0.37 
8.59 ±0.80 

YLAM 
YLAN3M 

(mb) 

6.92 
10.89 
11.32 
10.11 

Prenowitz 
YLAN3M 

(mb) 

7.18 
11.49 
11.94 
11.02 

KMT 
(mb) 

6.82 
11.54 
11.59 
9.76 

* See reference 10. 
b See reference 18. 
0 See reference 2. 

TABLE IV. Comparison of various values of the neutron-proton 
cross section, <rnp, at 158 MeV. The values in the column labeled 
''inelastic p-d" are obtained from the values of <rnp-\-0pp given in 
Table II by subtracting the value of <rpp measured by Caverzasio 
et al.& The values obtained from the phase-shift solutions of 
Breit et al.h and Kerman, McManus, and Thaler0 are also given. 

Laboratory 
angle 

5° 
10° 
15° 
20° 

Inelastic 
p-d 

(mb) 

7.1 ±2.5 
4.84±0.44 
5.29±0.15 

YLAM 
YLAN3M 

(mb) 

7.92 
6.64 
5.51 
4.56 

KMT 
(mb) 

6.42 
5.31 
4.42 
3.52 

a See reference 19. 
b See reference 10. 
• See reference 2. 

values of Ft and F8 in this region are so small that even 
large percentage errors in them could not affect the cross 
section appreciably, the important contributions coming 
from the higher angular momentum states. The most 
reasonable guess, apart from experimental error, is that 
the discrepancy is due to effects arising from final-state 
interaction in P or D states. 

The values found for the parameters in Table II can 
be compared to those found from different considera
tions. For instance, in impulse approximation 2* is 
related to the elastic proton-deuteron center-of-mass 
cross section by2 

da/dtt= (PD/PQ)2F2(q)i:tl (4.5) 

where F(q) is the deuteron form factor, 

F(q) = j\<t>o\>exY>mq'r)dr, (4.6) 

and PD is the momentum in the proton-deuteron center-
of-mass system. The elastic cross section was also meas
ured in SWC from which one obtains experimental 
values of 2*, using Eq. (4.5). In Table III these values 
of 2* are compared with those from Table II and also 
with the predictions of various nucleon-nucleon phase-
shift solutions. The column labeled YLAM-YLAN3M 
gives the predictions of the phase-shift solutions of 
Breit and his collaborators10 at 140 MeV. These are the 
best solutions of their energy-dependent phase-shift 
analysis.17 The column labeled Prenowitz-YLAN3M is 
the prediction obtained by combining the T— 1 phase 
shifts of Prenowitz18 and the T=0 phase shifts 
(YLAN3M) of Breit. The column labeled KMT is the 
predictions using the nucleon-nucleon amplitudes given 
by Kerman, McManus and Thaler.2 The inelastic and 
elastic values of 2* are seen to agree within the rather 
bad statistics. However these experimental values seem 
to be definitely smaller than the phase-shift predictions 
at 15° and 20°. 

17 The author wishes to thank Professor Breit for making availa
ble the relevant computer results. 

18 E. Prenowitz (private communication). The author wishes to 
thank E. Prenowitz for making his results available to him, 
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TABLE V. Comparison of the values of 2 , found from the 
analysis of inelastic proton-deuteron scattering with the predic
tions of the phase-shift solutions of Breit et al.,& Prenowitz,b and 
Kerman, McManus, and Thaler.6 

Laboratory 
angle 

5° 
10° 
15° 
20° 

Inelastic 
p-d 

(mb) 

12.l7db0.25 
11.50±0.70 
10.32±0.54 
6.70±0.45 

YLAM 
YLAN3M 

(mb) 

10.11 
8.02 
6.16 
4.96 

YLAM 
Prenowitz 

(mb) 

10.36 
7.78 
6.26 
5.43 

KMT 
(mb) 

10.5 
7.59 
5.70 
4.91 

* See reference 10. 
b See reference 18. 
c See reference 2. 

The proton-proton cross section, crpp, has been meas
ured at 158 MeV by Caverzasio et al.19 at the relevant 
angles. Using these values and the values of crnp+<TPP 

found in the present analysis, we get the values of anp 

given in Table IV. These values are compared with the 
values of anp predicted by the above phase-shift 
analyses. At 10° and 15° the values of anp found here 
are consistent with the phase-shift predictions. At 20° 
we find a value of anp larger than the predicted values, 
though the predicted values differ considerably between 
themselves. No reliable value of anp is obtainable at 5°. 

There are no independent measurements of 2,. 
Table V compares the values of 2« found in the present 
analysis with the phase-shift predictions. In all cases 
the experimental values are considerably larger than 
the phase-shift values. A closer look at the amplitudes 
which go into 2* [Eq. (3.10)] shows that it is largely 

18 C. Caverzasio, K. Kuroda, and A. Michalowicz. J. Phys. 
Radium 21, 319 (1960). 

dominated by the T=0 amplitudes, particularly the 
real parts of Bo, EQ, and FQ. It is, of course, just the 
r = 0 phase shifts for which we have the least informa
tion, resulting in significant statistical uncertainties in 
the phase-shift solutions.20 It would be of great interest 
to see if the present T=Q phase-shift solution could be 
modified so as to fit the values of 2 , found here, without 
doing violence to the rest of the neutron-proton data. 

In conclusion it can be said that the small-angle 
slightly-inelastic proton-deuteron scattering data can 
be quantitatively understood in terms of the basic 
nucleon-nucleon interaction and neutron-proton final-
state interaction in S states only. Three nucleon-nucleon 
parameters are needed to fit the data at a given angle. 
Two of these, 2t and (crpp+(TnP) are found to have 
values generally consistent with the values obtained 
from other considerations. However the most important 
parameter, 2„ is found to have a value much larger 
than that predicted from phase-shift solutions. The 
values of 2S found here may be of value in future 
searches for T=Q phase shifts. 
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